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The statistical bootstrap model (SBM) [1] gave the
first evidence that an exponentially growing hadronic
mass spectrum gH(m) → exp[m/TH ] for m → ∞ could
lead to new thermodynamics above the Hagedorn tem-
perature TH . For almost four decades its grand canonical
formulation was used in a variety of applications related
to hadroproduction. Recently, using the microcanonical
formulation, we showed [2] that in the absence of any re-
strictions on m, resonances with the Hagedorn mass spec-
trum behave as a perfect thermostat of constant temper-
ature TH and perfect chemical reservoir, i.e. they impart
the Hagedorn temperature TH to particles which are in
thermal contact and force them to be in chemical equi-
librium.

Therefore, the entire framework of the SBM which is
based on the grand canonical ensemble must be revisited.
In fact, it is necessary to return to the foundations of the
statistical mechanics of hadrons and study the role of the
Hagedorn mass spectrum for finite masses of hadronic
resonances above the cut-off value mo, below which the
hadron mass spectrum is discrete. Such an analysis for
an arbitrary value of the power prefactor in gH(m) (see
below) is important for a better understanding the ex-
perimental data on elementary particle collisions.

Consider the microcanonical ensemble of NB Boltz-
mann point-like particles of mass mB and degeneracy gB,
and NH hadronic point-like resonances of mass mH with
a mass spectrum gH(mH) = exp[mH/TH ](mo/mH)a for
mH ≥ mo which obeys the inequalities mo ≫ TH and
mo > mB. Then the microcanonical partition in nonrel-
ativistic case reads as (NH + NB ≫ 1)
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where Ekin = U −mHNH −mBNB is the kinetic energy
of the system, and the auxiliary integral is denoted as

Ib ≡
∞
∫

0

dξ

(2π)2 ξb e−ξ .

For a single Hagedorn thermostat, NH = 1, we treat
the mass of Hagedorn thermostat mH as a free parameter
and determine the value which maximizes the entropy of
the system. We showed that the solution m∗
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provides the maximum of the system’s entropy and de-
fines the temperature of the system

T ∗(m∗

H) ≡
2 Ekin

3(NB + 1)
=

TH

1 +
(

3
2 − a

)

TH

m∗

H

. (3)

0 5 10 15 20 25 30
 NB

0

1

 T
/T

H

 a = 0
 a = 3
 NB

kin
 (a = 0)

 NB

kin
 (a = 3)

FIG. 1: A typical behavior of the system’s temperature as
the function of the number of Boltzmann particles NB for
a = 3 and a = 0 for the same value of the total energy U =
30mB . Due to the thermostatic properties of a Hagedorn
resonance the system’s temperature is nearly constant up to
the kinematically allowed value N

kin

B [3].

Thus, as m∗

H → ∞ it follows that T ∗(m∗

H) → TH , while
for finite m∗

H ≫ TH and a > 3
2 (a < 3

2 ) the temperature
of the system in equation (3) may differ from TH , but,
as shown in Fig. 1, the maximal deviation is about 10 -
20 %, as long as there is sufficient energy in the system
to keep m∗

H above the lower mass cut-off mo. Also Fig.
1 shows that for a > 3/2 the Hagedorn temperature is
not a limiting temperature, as it is commonly believed in
the grand canonical SBM.

The analysis shows that fragmentation of a single
heavy Hagedorn thermostat into several does not change
the temperature of the system. This is so because the
exponential part of the mass spectrum gH(mH) is indif-
ferent to splitting the mass of a single Hagedorn ther-
mostat mH into masses mi

H of several thermostats, since
the energy conservation requires mH =

∑

i mi
H , whereas

the prefactor (mo/mi
H)a does not affect much the corre-

sponding exponent exp[mi
H/TH ]. This finding not only

explains why the observed inverse slopes (temperatures)
of hadrons produced in high energy elementary particle
collisions are 175± 15 MeV, but it also justifies the main
assumption of the canonical formulation of the statisti-
cal hadronization model [4] that smaller clusters may be
reduced to a single large cluster.
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